- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Guermond, Jean-Luc (2)
-
Wang, Zuodong (2)
-
Ern, Alexandre (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A limiting technique for scalar transport equations is presented. The originality of the method is that it does not require solving nonlinear optimization problems nor does it rely on the construction of a low-order approximation. The method has minimal complexity and is numerically demonstrated to maintain high-order accuracy. The performance of the method is illustrated on the radiation transport equation.more » « lessFree, publicly-accessible full text available October 28, 2026
-
Ern, Alexandre; Guermond, Jean-Luc; Wang, Zuodong (, Journal of Scientific Computing)We propose an operator-splitting scheme to approximate scalar conservation equations with stiff source terms having multiple (at least two) stable equilibrium points. The scheme com- bines a (reaction-free) transport substep followed by a (transport-free) reaction substep. The transport substep is approximated using the forward Euler method with continuous finite elements and graph viscosity. The reaction substep is approximated using an exponential integrator. The crucial idea of the paper is to use a mesh-dependent cutoff of the reaction time-scale in the reaction substep. We establish a bound on the entropy residual motivating the design of the scheme. We show that the proposed scheme is invariant-domain preserv- ing under the same CFL restriction on the time step as in the nonreactive case. Numerical experiments in one and two space dimensions using linear, convex, and nonconvex fluxes with smooth and nonsmooth initial data in various regimes show that the proposed scheme is asymptotic preserving.more » « less
An official website of the United States government
